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What | cannot create,

| do not understand.

Know how to solve every problem that
has been solved.

Richard Feynman, 1988

Lot
«JAX LONDON

@ by devmio



*J

e
AX LONDON

o hy & devmio

€ YouTube > Suchen Q

LETSBUILDGPT. =
FROM SCRATCH. ==
IN CODE.

SPELLEDOUT. ™=

HBH

0:00/1:56:19 - intro: ChatGPT, Transformers, nanoGPT, Shakespeare »

Aad & Norm

- -

Maskect
MUl méad

At o

Uuipt
Embecdng

(shited ngy)

Let's build GPT: from scratch, in code, spelled out.
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Let's build GPT: from scratch, in code, spelled out.
Andre] Karpathy

- Simplified GTP-2 model with approx. 10 million parameters

- 250 lines of Python code

_ uses PyTorch () PyTO ['C h

- decoder only
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Kotlin Multiplatform

Source code sharing

- Cross-platform development
- Support for native performance - Kotlin Native

- Cross-platform Ul with Compose Multiplatform
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Al/ML with Java and JVM

Eclipse DeeplLearning4J ‘% D L4J

» Comprehensive Deep Learning Framework: Provides tools like SameDiff,
ND4J, and DataVec for machine learning on the JVM.

* Integration Support: Compatible with models from TensorFlow, Keras, and
more.

 Build upon native c++ and CUDA libraries for speed

» Open-Source & Community-Driven: Licensed under Apache 2.0 with active
community contributions. open governance at the Eclipse foundation.

https://deeplearning4j.konduit.ai/
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Al/ML with Java and JVM

Forecast

* Project Babylon
» https://openjdk.org/projects/babylon/articles/auto-diff

* Project Panama

- https://openjdk.org/projects/panama/

» HAT- Heterogeneous Accelerator Toolkit (memory structuces off
the heap) using project panama for memory and functional API

«JAX LONDON :
@ by devmio ’ 4 |



https://openjdk.org/projects/babylon/articles/auto-diff
https://openjdk.org/projects/panama/

enerative
re-trained
ransformers

/4

/



90+

O

poe
.
s e

b

-
~

ransformers

»
s

(C) Adriana Harakalova, 2024

e
«JAX LONDON

o hy & devmio



Attention Is All You Need

Probabilities
((AddeNom J« |

- Published 2017
| . N :

- Google Brain, Google Research s Hoat

e-t al Forward F N x

. N =

- Transformer model architecture oo

Attention Attention

__ 1 1

- Efficient computation as goal

Positional

Positional
Encoding SEQ

‘v Encoding

Output
Embedding

Qg:
Input

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Inputs Outputs
Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin (shifted right)

- Translations
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re-trained
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Decoder only . .
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MLP - Multilayer Perceptron
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Forward propagation
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Forward propagation
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Forward propagation
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Matrix Multiplication

A=X-W
All — X1W11+X2W21
A12 — X1W12+X2W22
Ay = X W3+ X, Wos W — ’Wll le W13]
W21 W22 W23
X = [Xl Xz] A = [All AIZ A12]
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Matrices multiplication

typealilas Matrix = List<lList<Double>>

class Matrix(private val data: List<List<Double>>) {
private val numRows data.size
private val numCols data.firstOrNull()?.size 7: 0@

fun matmul(other: Matrix): Matrix {

require(numCols == other.numRows) {
"Number of columns of A ($numCols) must equal number of rows of B (${other.numRows})."
}

val resultData = List(numRows) { i —>

List(other.numCols) { j —->
(@ until numCols).sumOf { k —>
datalil [k] * other.datalk][j]
}

¥
h

return Matrix(resultData)
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RelLU

fx>0
LU = {)(; ifﬁ <0

fun Matrix.relu(): Matrix {
val reluData = data.map 1 row —>
row.map 1 value —>
max(0.0, value)
}
}

return Matrix(reluData)
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Forward Propagation in Kotlin

class Linear() {
val welghts: lTensor
val blas: lTensor

fun forward(input: Tensor): Tensor {
val output = input.matmul(weight.value.t()) + bias.value
return output

¥
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Sinus calculation with neuronal network
Al,l A2,1

Y
Al Ay, \
Angle - g . sin(Angle)
A 16 Aj 16 /
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Forward Propagation in Kotlin

class SineMLP : Module() {
private val inputLayer: Module = Linear(1l, 16)
private val hiddenlLayerl: Module Linear(16, 16)
private val hiddenlLayer?: Module Linear(16, 16)
private val outputlLayer: Module = Linear(16, 1)
private val relu: Module = RelLU()

override fun forward(input: Tensor): Tensor {
var X = 1nput
X inputLayer. forward(x)
relu. forward(x)
hiddenlLayerl. forward(x)
relu. forward(x)
hiddenlLayer2. forward(x)
relu. forward(x)
outputLayer. forward(x)
urn X

X
X
X
X
X

s L | | | A | I | B |

-
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Forward Propagation in Kotlin

class SineNN(override val name: String="sin") : Module() {

private val sineModule = sequential{
input(1)
linear(16, "layerl") {
} activation = relu

linear(16, "layer2") {
activation = relu
+

Linear(1l, "output layer")

}

override fun forward(input: Tensor): Tensor =
sineModule. forward(input)

}
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Forward Propagation in Kotlin

1 Input, 2 hidden layers with 16 neurons, 1 output

Input 16 16 32
1.layer => 2.layer 250 16 212
2.layer => output 16 1 17
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Supervised learning
PARADIGM OF MACHINE LEARNING

Predict Precision Optimize
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Backpropagation
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Loss function |

_ y
MSE = N; (x; — y,)

fun Tensor.meanSquaredError(other: Tensor): Double {

if (this.size !'= other.size) {
throw IllegalArgumentException("Tensors must have the same size.")
}

var sum = 0.0

for (i in ® until this.size) {
val error = this[i] - other[il
suUm += error x error

I3

return sum / this.size
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Deep neural networks
Math

MLP example in vectorized form:

w) W{j) f\* Backward pass:
X—7z—h—y—L f=1
/ /‘ y=L(y—t)
b1 b(2) W (2) — yhT
Forward pass: b2 — v
z=WWx + bl h=W®&Ty
h = o(z) z = hoo/(z)
y = W®h 4+ b® WO —zx '
L b =z
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Stochastic gradient descent

Optimization method

Gradient descent can write code
better than you. I'm sorry.

Andrej Karpathy, 4.8.2017
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Generative

Pattern recognition and prediction
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Input Text Processing

* Tokenization - a process in which a text is broken down into

smaller units such as words, sentences, or characters, which are
referred to as "tokens.”

* Encoding - Assigning a uniqgue numerical identifier to each
token.

* small GPT-2 has approximately 50,257 tokens (Byte Pair
Encoding).
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Tokenization and Encoding

Character-based encoding example

HALLO Text
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Tokenization and Encoding

Character-based encoding example

HALLO Text
lHl lAl Ll Ll lol Tokens
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Tokenization and Encoding

Character-based encoding example

HALLO Text
lHl lAl Ll Ll lol Tokens

P=(8 1 12 12 15 g§umerical
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Level 1 - <

Input Embedding - Add&TN”m )
4 )
Feed
Forward
\_ x Y,
. Add & N
- Every token processed in the ~( — )
= N N ( .' \
same time - efficient Multi-head
- every token represented as a ——
vector in multidimensional \S v
Positional
Space Encoding ( )) ?
- Values represent semantic C et
meaning C Embedding y
T
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Embedding

Text as numbers
In multidimensional space

GTP2-768 dimensions

P|_s8 szskDi%}c[IlthgxclApVLv
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Positional encoding

* Please buy an apple and
an orange

» Apple unvelled the new
phone

» CONTEXT

D| g8 szskDSZ@QIIthgchApVLV
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Level 2 -

Positional Encoding -~ Add&; Norm
- provides information about the order In ! Feed
which words appeatr. \ '

- Uses e.g sinusoidal functions (sine and ~(_ Add & Norm
cosine) to generate the positional S
encodings based on the position of the | Aftention
word in the sequence. This ensures that e

words at different positions have

Positional
Encoding G

different encodings Input

Embedding

\_
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Level 3 ( \

Self-attention mechanism ~( Add&T Norm )
e R
Feed
Forward
e Context rich . | )
» Attention captures contextual ~( Ade & Norm )
meanlng g Multi;head A
Attention
- Y
1 1
\- Y
Positional
Encoding ( ;) ?
(- R
Input
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Level 3 e — -

Self-attention meChaniSm ...................................................................................................................

- query (Q) vector determines what K
the model is focusing on - query

- key (K) vector represents potential |maE
matches for the query

- value (V) hoilds information to be | |
retrieved based on the attention I R
score between the query and key (1117
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2D GTP-2 Visualization

https://poloclub.github.io/transformer-explainer/
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https://poloclub.github.io/transformer-explainer/

3D nanoGTP Visualization
https://bbycroft.net/lim
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https://bbycroft.net/llm
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ML in Kotlin from scratch

Kotlin libraries

-Standing on the shoulders of giants
-Kotlin port of nanoGPT -> 80%
-Now as Kotlin Multiplatform
-https://github.com/michalharakal/KPTChat/tree/feature/kmp
-Kotlin port of micrograd -> 90%
-With its own DSL language for graphviz DOT language
-https://qgithub.com/michalharakal/miKrograd
- Testing framework for validation with Pytorch calculations
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Source code

https://github.com/michalharakal/from-zero-to-kotlin-gpt/tree/jax-london

We ask for
your feedback!

& devmio

Please,
don‘t forget

~

& devmio
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Links

Sources and links

- Attention Is All You Need - https://arxiv.org/pdf/1706.03762

- Let's build GPT: from scratch, in code, spelled out (https://www.youtube.com/watch?v=kCc8FmEb1nY)

- Pytorch logo https://commons.wikimedia.org/wiki/File:Pytorch logo.png

- https://www.neuromedia.ca/how-many-neurons-are-in-the-human-brain/

- The math behind Attention: Keys, Queries, and Values matrices
https://www.youtube.com/watch?v=UPtG 380q8o&list=PLs8w1Cdi-zvYskDS2iclltfZgxclApVLv&index=2

- https://commons.wikimedia.org/wiki/File:Rosenbrock function.svg https://github.com/michalharakal/KPTChat/tree/feature/kmp

- https://github.com/michalharakal/miKrograd

- https://Imos-ai.qgithub.io/arc/

- https://paperswithcode.com/paper/kan-kolmogorov-arnold-networks

- https://github.com/kindxiaoming/pykan

- https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png

- https://github.com/michalharakal/gradienttracer

- https://deeplearning4j.konduit.ai/
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https://lmos-ai.github.io/arc/
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https://github.com/kindxiaoming/pykan
https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png
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